skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Klimenko, Georgiy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Pankratov, Denis (Ed.)
    In the clustering with neighborhoods problem one is given a set S of disjoint convex objects in the plane and an integer parameter k ≥ 0, and the goal is to select a set C of k center points in the plane so as to minimize the maximum distance of an object in S to its nearest center in C. Previously [HKR21] showed that this problem cannot be approximated within any factor when S is a set of disjoint line segments, however, when S is a set of disjoint disks there is a roughly 8.46 approximation algorithm and a roughly 6.99 approximation lower bound. In this paper we investigate this significant discrepancy in hardness between these shapes. Specifically, we show that when S is a set of axis aligned squares of the same size, the problem again is hard to approximate within any factor. This surprising fact shows that the discrepancy is not due to the fatness of the object class, as one might otherwise naturally suspect. 
    more » « less
  2. Bojanczyk, Mikolaj; Chekuri, Chandra (Ed.)
    Given a point set P in the plane, we seek a subset Q ⊆ P, whose convex hull gives a smaller and thus simpler representation of the convex hull of P. Specifically, let cost(Q,P) denote the Hausdorff distance between the convex hulls CH(Q) and CH(P). Then given a value ε > 0 we seek the smallest subset Q ⊆ P such that cost(Q,P) ≤ ε. We also consider the dual version, where given an integer k, we seek the subset Q ⊆ P which minimizes cost(Q,P), such that |Q| ≤ k. For these problems, when P is in convex position, we respectively give an O(n log²n) time algorithm and an O(n log³n) time algorithm, where the latter running time holds with high probability. When there is no restriction on P, we show the problem can be reduced to APSP in an unweighted directed graph, yielding an O(n^2.5302) time algorithm when minimizing k and an O(min{n^2.5302, kn^2.376}) time algorithm when minimizing ε, using prior results for APSP. Finally, we show our near linear algorithms for convex position give 2-approximations for the general case. 
    more » « less
  3. Ahn, Hee-Kap; Sadakane, Kunihiko (Ed.)
    In the standard planar k-center clustering problem, one is given a set P of n points in the plane, and the goal is to select k center points, so as to minimize the maximum distance over points in P to their nearest center. Here we initiate the systematic study of the clustering with neighborhoods problem, which generalizes the k-center problem to allow the covered objects to be a set of general disjoint convex objects C rather than just a point set P. For this problem we first show that there is a PTAS for approximating the number of centers. Specifically, if r_opt is the optimal radius for k centers, then in n^O(1/ε²) time we can produce a set of (1+ε)k centers with radius ≤ r_opt. If instead one considers the standard goal of approximating the optimal clustering radius, while keeping k as a hard constraint, we show that the radius cannot be approximated within any factor in polynomial time unless P = NP, even when C is a set of line segments. When C is a set of unit disks we show the problem is hard to approximate within a factor of (√{13}-√3)(2-√3) ≈ 6.99. This hardness result complements our main result, where we show that when the objects are disks, of possibly differing radii, there is a (5+2√3)≈ 8.46 approximation algorithm. Additionally, for unit disks we give an O(n log k)+(k/ε)^O(k) time (1+ε)-approximation to the optimal radius, that is, an FPTAS for constant k whose running time depends only linearly on n. Finally, we show that the one dimensional version of the problem, even when intersections are allowed, can be solved exactly in O(n log n) time. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)